
Inside the NGINX Worker Process

Life of an HTTP Request

Shared memory is used for cache, session persistence, rate limits, session log

Cache LoaderCache Manager

NGINX ARCHITECTURE
NGINX Process Architecture

Worker processes handle HTTP
and other network traffic

Read Request Headers
SSL and SPDY decrypt encrypted traffic

(Apply keepalive management and
bandwidth shaping to all client traffic)

Generate Content
Generate response locally, or

proxy/gateway to an upstream service

Concurrency Control
Keepalive Management

Response Caching

Load Balancing
Session Persistence
Health Checks and Retries

Upstream Services
HTTP, HTTPS, FastCGI, uWSGI, SCGI, memcached

Response Filters
gzip, SSI, headers,

image_filter, sub, etc…

Log
Access and
session log

INTERNET REQUESTS

Most web application platforms use blocking (waiting) I/O

Each worker can only process one active connection at a time

Listen Sockets (port 80, 443, etc)

Wait for an event (epoll or kqueue)

accept new connection socket

on error...

close

read wait until request is read
write wait until response is written
wait wait on KeepAlive connection

BLOCKING AND NON-BLOCKING I/O

UPDATING CONFIGURATION, UPGRADING NGINX

An NGINX worker can process hundreds of thousands
of active connections at the same time

NGINX uses a Non-Blocking “Event-Driven” architecture

Listen Sockets & Connection Sockets

Wait for an event (epoll or kqueue)

Event on Listen Socket:

accept new

set to be non-blocking

add to the socket list

Event on Connection Socket:

data in read buffer? read

space in write buffer? write

error or timeout? close
& remove from socket list

Load new configuration with no downtime

Load new NGINX binary with no downtime

Master Master

W W W W W W

W W W W W W

Master Master (Old) Master (New) Master (New)

W W W W W W W W

W W W W W W W W

Master starts new
worker processes with

new configurations

Old worker processes complete
existing transactions and then

exit gracefully

New and old instances of NGINX run in
parallel and both will handle connections

SIGQUIT the old
Master process and

it will terminate
gracefully

Update NGINX
binary on disk

SIGUSR2 master

NGINX keeps on running
with new configuration, and
no interruption in service

Update configuration on disk
SIGHUP master or nginx –s reload

Identify
Configuration Block

Request matching and rewriting

Apply Rate Limits
Rate and concurrency

limiting

Perform Authentication
Internal and external

access control

MASTER PROCESS

Child Processes

WEB, EMAIL
and

TCP traffic

Non Blocking, event-driven processing engine

Auxiliary threads for blocking operations
(e.g. disk I/O)

MAIL STATE
MACHINE

STREAM STATE
MACHINE

HTTP STATE
MACHINE

Static Content
and disk cache

Access and Error
log to disk and syslog

HTTP, Mail and
Stream (TCP) proxy

FastCGI, uWSGI. SCGI,
memcached gateway

Internal redirects
and subrequests

WWWCM CL W

